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Abstract

Mapping methods are developed to improve the accuracy and efficiency of

probabilistic structuraI analyses with coarse finite element meshes. The mapping

methods consist of" (I) deterministic structural analyses with fine (convergent) finite

element meshes, (2) probabilistic structural analyses with coarse finite element

meshes, (3) the relationship between the probabilistic structural responses from the

coarse and fine finite element meshes, and (4) a probabilistic mapping. The results

show that the scatter in the probabilistic structural responses and structural reliabil-

ity can be efficiently predicted using a coarse finite element model and proper map-

ping methods with good accuracy. Therefore, large structures can be efficiently

analyzed probabilistically using finite element methods.



Introduction

It has been recognized in the structures community that uncertainties in the

structural parameters as well as in the service environment needto be consideredin

the evaluation of structural integrity/reliability. Probabilistic structural analysesare

formal methods to include those uncertainties. However, thesemethodsare inher-

entlv computationally intensive due to the large number of deterministic analyses

required to accurately simulate the effect of the uncertainties on the desired struc-

tural response (stress,displacement, frequency, etc.) necessaryfor structural reli-

ability assessment.Moreover, modernstructures areoften analyzedby finite element

methods. Probabilistic structural analysesusing finite element modelscan be eco-

nomically performed if relatively coarse meshesare used. Finite element analyses

using coarse meshes not only raise questions regarding the convergenceon the

deterministic structural responses (using mean structural parameters and mean

loads) but also significantly alter the true probability distributions of the structural

responses. It is important, therefore, to evaluate the influence of meshcoarseness

on the accuracy of the probabilistic structural responsesand the structural reliability.

Recently, several alternatives to overcome the problems were examined at NASA

Lewis Research Center. A methodology is developed to perform a probabilistic

mapping on the results from a probabilistic structural analysis with a coarse finite

element mesh. In this paper, these alternatives are presented. The theoretical

background and the computational procedure are also described. Four numerical

examples were analyzed to demonstrate the effectiveness and accuracy of this meth-

odology.
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Theoretical Background

The accuracy of the probabilistic structural responsesis most affected by two

factors. The first one is the statistical accuracy of the probability distributions of the

random variables involved in the analysis. The second one is the coarsenessof the

finite element models. The random variables are independent of the coarsenessof

the finite element model and are assumedto be accurately described. Therefore, the

error of the probabilistic structural responsefor a given finite element mesh is di-

rectly causedby the coarsenessof the model. In order to derive the mapping meth-

ods, a coarse finite element mesh must be chosen in such a way that this model

reflects proper structural behavior with a tolerable error, for example, I0 to 20 %

of error. Since the structural responsesfrom coarse and fine finite element meshes

are simulated through the samestructural mechanicsand are influenced by the same

random variables, high correlation between them is expected and a fully correlated

condition is assumedin the following derivation. Therefore, the linear relationship

between the structural responsesfrom fine and coarse finite element meshesis re-

presentedby Eq.(l).

XI= AXc+ B (I)

where ,V_ and X_ are the probabilistic structural responses from fine and coarse

meshes respectively. The constants A and B are determined by using the probabi-

listic potential energy variational principle developed by kiu, Mani and Belytschko

and different orders of correction. The potential energy variation principle states
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that the mean and the standard deviation of the probabilistic structural responsefor

a given finite element mesh are

N

=xo- Z (2)
k=l

and

2
a k (3)

where a_ is the standard deviation of the k 'h independent random variable; N is the

number of independent random variables; X is the probabilistic structural response

for a given finite element mesh; X ° represents the deterministic structural response

which is computed using mean values of the associated primitive random variables;

X,' and Xk" are defined in equations (4) and (5).

x,' = _Xl_tk (4)

,I - 2xk = eEx/_t k (5)

where/.Tk is k 'h independent random variable.

In the following, three relationships between structural responses from coarse and

fine finite element models are derived based on different assumptions.
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(1) Shift Mapping

Shift mapping is a first moment correction method. Let

Y/= X/- E(X/) (6)

and

Ye = Xe- E(Xc) (7)

where X: and X, denote the probabilistic structural responses simulated using fine

and coarse finite element meshes respectively. First order correction can be achieved

by letting

Y:= Yc (8)

Substituting Eqs.(2) and (3) into Eq.(8), we obtain

x:=xc-x°+x: +
N

• k O'k

k=l

N

k=l

(9)
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The last two terms in Eq.(9) are related to the second derivatives of structural re-

sponses to each independent random variable. +If linear relationships between the

structural responses and the independent random variables exist, the second deriva-

tives become zero. Therefore, Eq.(9) can be simplified as

xz= +x; (xo)

This means that the probability distributions of structural responses simulated using

a fine finite element mesh can be obtained by a simple shift on the abscissa of the

probability distributions of structural responses simulated using a coarse finite ele-

ment mesh. The shift amount is the difference between the deterministic values from

coarse and fine finite element meshes. However, if a linear relationship does not ex-

ist, Eq.(10) is only an approximation. This approximation will be reasonable only if

the coarse model causes a small error, say less than 10 %, or the relation between

structural response and random variables is approximately linear. From this analy-

sis, the constants A and B in Eq.(l) are shown in Eq.(l 1).

(|l)

(2) Ratio Mapping

Ratio mapping is a second moment correction method. Letting
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Xf- E(X/) (12)
Z/= %

and

Xe- E(Xc) (13)
Q= ax,

and setting the normalized structural responses Zc and Z; from coarse and fine finite

element meshes to be equal, we obtain

x/- E(x) xc- E(Xc)
ax_ ax_

(14)

Substituting Eqs.(2) and (3) into Eq.(14), the relationship between the structural re-

sponses from coarse and fine finite element meshes can be developed as follows. Let

"g (15)
rl - -'_c

and

/ _-_(Xf)'_a_ (16)

O"k
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Substitute eqs.(15)and (16) into eq.(14), we obtain

O ,_ 2

x: = r_,x'c- r2(X;- z(,x'_)k_k)

+ (V- _(x:),""_,)
(17)

For a given coarse model which reflects proper structural behavior, the ratio r2 is

dominated by several key or sensitive random variables. This ratio can be considered

as a weighted average of the individual ratio of the first or second derivative of the

structural responses from fine and coarse models. Let the structural responses from

fine and coarse models be represented by Eqs.(18) and (19).

N N

o Z 2 -?x:= x_ + a,u,+ b:_j
i----1 j----i

(18)

and

N N

,__-x:+y, _i.:+2 _?
i-----1 j=l

(19)

where a:, br c, and dj are constants determined numerically:. We assume



i,j = I. N (20)

Since, fine and coarse structural models are subjected to the same loads and same

random variables with similar structural behavior. Also, in the limit, the ratios in

equation (20) is equal to 1 when the coarse model approach to the fine model. Sub-

stituting Eq.(20) into Eq.(16), it is found that

q ___r2___ _ (21)

Equation (21) will be verified later by the numerical examples. Substituting Eq.(21)

into Eq.(17), we obtain

x;
Xf _--_c Xc (22)

Therefore, the constant A and B in Eq.(l) are

A
v;

(23)

B=0
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The ratio mapping method represents the fact that not only the mean values are

different but also the scatter around the mean can be either wider or narrower.

Therefore, the normalized structural responses from both models are considered to

be equal in this method.

(3) Mixed Mapping

For a very coarse finite element mesh on which neither shift mapping nor ratio

mapping works, a mixed mapping method is proposed. Mixed mapping can be

considered as an average value of the structural responses predicted by shift and ra-

tio mapping methods. The relationship between the structural responses from fine

and coarse finite element meshes are represented by Eq.(24)

lI .]x:_- T l+-vz-.o xc +x_ .
(24)

Computational Procedure

(1! Probability Distribution

The probability distributions of the converged structural responses are simulated

by the following steps.

Step 1

model.

: compute the convergent deterministic structural response using fine mesh
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Step2 : simulate the probability distribution of the structural response using a coarse

finite element mesh.

Step 3 : determine the probabilistic relationship between the coarse and fine finite

element responses.

Step 4 : compute the convergent probability distribution of the structural response

with the results obtained from steps (1) to (3) by a probability mapping.

(2) Probability of Damage Initiation

Crack initiation occurs when the stress is greater than the strength of the mate-

rial. The probability distribution of the strength is simulated using the multifactor

interaction equations as described by Boyce and Chamis 2. The probabilistic stress

of a given finite element mesh is simulated by Shiao and Chamis 3. The convergent

stress is then simulated according to the computational procedure described previ-

ously. The probability of damage initiation is computed by the following equation.

P/= P(stress > strength)

= F,h(x)fss(X)
(25)
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where F,_ is the cumulative distribution function of the strength;f_ is the probability

density function of the stress.

Numerical Examples and Discussion

Four examples are studied to verify this methodology. The computer code

NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) 4 is used to

perform the probabilistic structural analyses. Maximum effective stress and the first

buckling load from coarse and fine meshes using different mapping methods are
i

simulated in the following examples.

In the first example, a cantilever plate subjected to lateral pressure is analyzed as

shown in Fig.(l). Plate thickness and the uniform pressure are considered to be ran-

dom variables. Although the coarse finite element mesh underestimates the stress

by 25 %, the prediction of the cumulative distribution function of the stress using

ratio mapping with a coarse finite element mesh compares very well with the result

from the fine finite element mesh as shown in Fig.(2). In this example, the ratio r_

and r2 in Eqs.(15) and (16) are equal as derived in Eq.(21). Their values are

rI = r2 = 1.326

It is found that the shift mapping method provides good mean values but not the

scatter. The probability of damage initiation is shown in Fig.O). This study indi-

cates the accuracy predicted in the tail region of the probability distributions of the
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structural responses. Again, the prediction from ratio mapping gives an excellent

result.

In the second example, a buckling analysis of a simply supported composite plate

is performed. The plate geometry and the loading conditions are shown in Fig.(4).

The random variables considered are the coefficients of the stiffness matrix for the

force resultant-generalized strains relations from laminate theory. The probabilistic

distributions of those coefficients are computed by the NASA Lewis in-house com-

puter code PICAN (Probabilistic Integrated Composite Analyzer). In this example,

the buckling load is overestimated by 11 °,4.

well by ratio mapping as shown in Fig.(5).

Their values are

However, the buckling load is predicted

rl and r2 are found to be equal again.

r1 = r2 = 0.89

In the third example, a cantilever plate subjected to thermal/mechanical loads as

shown in Fig.(6) is analyzed. Three random fields (uncertainties) are considered.

They are thickness, modulus and temperature. Each field consists of correlated nodal

random variables. The loads at the free end are also considered to be random. The

structural parameters, such as modulus and strength, deteriorate under aggressive

service environments. In this example, even with a poor mesh (16°'o error in the

deterministic response), the probabilistic distribution of the structural response using

a coarse finite element mesh adjusted bv the ratio mapping method compare very

well with those using fine finite element mesh as shown in Fig.(7). The probability
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of damage initiation is also predicted well by the samemethod asshown in Fig.18).

In addition, the ratio of the computational time using coarse and fine meshes is

about 1:20 as shown in Table (1). Therefore, tremendous computational time is

saved with this methodology.

In the final example, a tapered cantilever plate with variable thickness is studied.

The geometry and the loading conditions are shown in Fig.(9). The uncertainties

considered are the same as those in the previous example. The cumulative distrib-

ution function of the effective stress in Fig.(10) and the probability of damage initi-

ation in Fig.(11) are predicted very well by ratio mapping.

Concluding Remarks

In conclusion, the mapping methods are developed to perform probabilistic

structural analyses with coarse finite element meshes. It is found that (1) the shift

mapping works well only with a very good coarse mesh (i.e. error is less than 5%);

(2) ratio mapping accurately predicts the probability distribution and the structural

reliability even using a very coarse mesh; and, (3) results from mixed mapping always

lie between those from shift and ratio mapping. Using this methodology, good ac-

curacy can be achieved and computational time will be minimized. Therefore, the

dilemma experienced using either coarse or fine meshes for the probabilistic struc-

tural analyses, especially for large structures, is resolved.
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Number of Deterministic Error, CPU time,

Nodes stress percent sec

16 (4 by 4) 75.4 16 0.9

25 (5 by 5) 81.0 9 1.2

36 (6 by 6) 83.9 6 1.7

49 (7 by 7) 85.6 4 2.2

64 (8 by 8) 86.7 3 2.9

81 (9 by 9) 87.5 2 3.5

100 (10 by 10) 88.1 1.5 4.5

361 19.1(19 by 19) 89.4 0

Table 1. Comparison of the Error and CPU Time of the Deterministic Stress

Using Different Finite Element Meshes (Example 3)
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